

Smart Stack Damper

Furnace Improvements www.heatflux.com

New Damper Design Saves Energy

- ❖ Draft and Excess O₂ are the two parameters that are being monitored and controlled
- Lot of progress has been made in Oxygen Analyzers in the last 20 years
- Very little attention has been paid to draft control
- Poor design and quality of final control element- stack dampers
- Very few dampers really operate properly in the Industry (most are left fully open)

Fired Heater Operation

- 90% of fired heaters in US are natural draft heaters
- Tramp air is directly dependent upon the draft inside the heater
- High draft can even affect the flame patterns
- Tramp air leakage can misguide the operating personnel

Tramp Air Leakage

- Air can leak from all the openings
 - Peep Doors, Header Boxes, Tube Penetrations etc.
- This air does not mix with fuel and shows up in O₂ analyzers
- It absorbs the heat that should be transferred to the heater tubes
- All air entering heater should be entering through the burners that are on

Stacks are highly oversized

- Stacks are designed for 115-120% of the loads and maximum ambient temperatures of 95°F to 105°F
- Stack design use 1.5 velocity heads pressure drop across damper, we need only 0.5 in fully open position
- Stack diameters and height are often decided by structural stability and minimum height considerations
- Stacks are over designed and produces very high draft in fired heaters

Stack Damper Operation

- Draft in natural draft heaters varies with ambient air temperature
- Night time cooler air temperature produces higher drafts, almost 0.1 inch extra draft is available
- Stack damper needs to be adjusted at least twice a day to optimize the heater operation
- Stack damper position for 115% load is around 55°-60° open
- Stack damper needs to be open at 45°-50° for full load operation

Stack Damper Operation

- For a manually operated damper, the stack damper operation becomes very cumbersome
- ❖ For a pneumatically operated dampers, the operators are concerned about closing the damper and tripping the heater
- In practice, most of the time damper blades are left fully open

Conventional Damper Blade System

- Parallel or Opposed Blade Operation
- All the blades are operated with a single actuator
- All the damper blades move at the same angle
- Non-Linear damper flow characteristics makes the system less efficient for draft control

Damper Flow Characteristics

Smart Stack Damper Characteristics

Fired Heater Draft Profile

- ❖ Damper is modulated to maintain 0.1"WC draft at arch
- Flue Gas Pressure Drop consists of pressure losses along:
 - Convection Section & Stack Entry
 - Stack friction
 - Stack exit loss

Stack effect:

 Movement of ambient air into the heater resulting from buoyancy due to density difference in hot flue gas and ambient air resulting from temperature differences

Stack damper needs to consume higher FIS pressure drop as the heater load goes down

Smart Stack Damper (SSD)

- Multiple pneumatic actuators provided to operate damper blades individually
- Independent control of damper blades changes the damper characteristics providing precise control at any load
- Seal plate is **optional** to avoid any leakage of flue gas, and provide additional pressure drop

Salient Features

- Multiple pneumatic operators with hand actuators at the panel
- Three pressure transmitters at arch
- Better controlling characteristics
- Operator friendly
- Avoid tramp air leakage
- Can be controlled from the control room

Stack Damper with 2 Blades

Conventional Design with Single Control Driver

Smart Stack Damper with Two Control Drivers

Parallel

Opposed

Stack Damper with 4 Blades

Conventional Design with Single Control Driver

Smart Stack Damper with Three Control Drivers

Parallel

Opposed

General Operating Philosophy for SSD

- Operating philosophy for a smaller diameter stack with 3 damper blades
- One actuator will be operated as per the heater load, another actuator will be adjusted to maintain the required draft at the arch
- This allows us to make major adjustment with one actuator quickly as the load is adjusted and then smaller adjustments can be done with the other actuator

Option-2

Case Study 1

Heater operates for 3 days in a year at 100% capacity

Rest of the year runs at lower capacity

Process Conditions

Parameter	Unit	100% Load	80% Load	65% Load	45.5% Load
Heater Load	MMBtu/hr	327.7	260.9	213.4	149
Flue gas flow rate per stack	lb/hr	183,587	145,493	116,115	79,881
Flue gas temperature	°F	529.3	478.3	435.6	383.2
Flue gas density	lb/ft³	0.037	0.039	0.041	0.045
Ambient temperature	°F	85	85	85	85

Existing Stack Details

- Location— Top of Convection
- Type— Self supporting
- Stack Diameter— 7'-11 ½" (I/S Insulation)
- Stack Length
 – 83 ft
- Stack Elevation— 130 ft
- Damper
 - Two blades- Parallel Operation

Stack Rating Calculation

- Stack rating calculation is performed at 100% heater load
- ❖ Draft at arch: 0.200" WC
- Stack effect is considered at a maximum ambient temperature of 85°F and average flue gas temperature along radiant, convection and stack section
- Flue gas side pressure drop:
 - Along convection section tubes
 - Stack entry loss= 0.5 velocity head
 - Pressure drop across damper= 1.5 velocity head (60° Open)
 - Stack exit loss= 1 velocity head

Draft Profile: Stack Rating Condition

Available Pressure Drop Across Damper

0.467

Available Pressure Drop Across Damper

45.5%

Pressure Drop Across Damper, inches WC					
Heater Load	Ambient Temperature, 85°F	Ambient Temperature, 30°F			
100%	0.126	0.282			
80%	0.236	0.391			
65%	0.286	0.441			

0.312

Pressure Drop Comparison: 85°F Vs 30°F

Damper Operation

- All the blades move at same angle (Θ)
- * For SSD operation two options are evaluated:
 - 2 damper blade system
 - Each damper blade can be operated individually at angles Θ_1 and Θ_2
 - 4 damper blade system
 - Centre two damper blades are operated together with a single actuator at angle Θ₂
 - Extreme two damper blade are operated at angle Θ₁ and Θ₃

Parallel Blade Dampers

SSD: Option 1

SSD: Option 2

Option 1

2 Blade Damper Operation

Damper Operation

• Parallel and opposed blade operation, all the blades move at same angle (Θ)

 \clubsuit SSD operation, the dual damper blades are operated independently at Θ_1

and Θ_2

Conventional System

SSD

Damper Openings at Different Loads

Co	Comparison of Damper Openings							
Heater Load	d ΔP Across Damper Parallel Opposed SS							
%	inches WC	Ө	Ө	Θ_1	Θ_2			
100	0.126	58°	60°	67.5°	67.5°			
80	0.236	42°	49°	54°	54°			
60	0.286	33°	42°	0°	75°			
45.5	0.312	19°	30°	0°	52°			

Impact of Ambient Temperature

Comparison of Damper Angles							
Ambient Temperature	ΔP Across Damper	Parallel	Opposed	SS	SD		
°F	inches WC	Ө	Ө	Θ_1	Θ_2		
85	0.126	58°	60°	67.5°	67.5°		
30	0.282	46.5°	52.5°	57.5°	57.5°		

Option 2

4 Blade Damper Operation

Damper Angles

Comparison of Damper Angles								
Heater Load	ΔP Across Damper	Parallel	Opposed	SSD				
%	inches WC	Θ_1	Θ_1	Θ_1	Θ_2	Θ_3		
100	0.126	58°	60°	0°	87.5°	90°		
80	0.236	42°	49°	0°	65°	90°		
60	0.286	33°	42°	0°	73°	0°		
45.5	0.312	19°	30°	0°	60°	0°		

Impact of Ambient Temperature

Two ambient conditions were considered to study the change in damper angles

Comparison of Damper Angles								
Ambient Temperature	ΔP Across Damper	Parallel	Opposed	SSD				
°F	inches WC	Θ_1	Θ_1	Θ_1	Θ_2	Θ_3		
85	0.126	58°	60°	0°	87.5°	90°		
30	0.282	46.5°	52.5°	0°	68.5°	90°		

Summary

With multiple actuators, one actuator could be used for major adjustments and other actuators for minor adjustments

Case Study 2

Coker Heater-

Stack designed for very low pressure drop along the off-take ducts and damper

Process Conditions

Parameter	Unit	100% Load	75% Load	60% Load	50% Load
Heater Load	MMBtu/hr	22.5	16.9	13.5	11.3
Flue gas flow rate	lb/hr	26,661	19,552	15,502	12,842
Flue gas temperature	°F	773.0	712.6	680.9	661.5
Flue gas density	lb/ft ³	0.030	0.032	0.032	0.033
Ambient temperature	°F	95	95	95	95

Existing Stack Details

- ❖ Location—Top of Convection
- ❖ Type— Self supporting
- ❖ Stack Diameter (Uninsulated)
 - **♦**Base- 15'-0"
 - ❖ Damper Location- 13'2"
 - **❖**Tip- 11'3"
- ❖Stack Length 149'5"
- ❖Stack Elevation 197 ft
- Damper
 - Two blades- Parallel Operation

Draft Profile: Stack Rating Condition

Available Pressure Drop Across Damper

0.905

Available Pressure Drop Across Damper

50%

Pressure Drop Across Damper, inches WC Ambient Temperature, Ambient Temperature, Heater Load 95°F 40°F 0.555 100% 0.300 0.734 80% 0.480 0.832 65% 0.577

0.651

Pressure Drop Comparison: 95°F Vs 40°F

Damper Operation

- ❖ In parallel and opposed blade operation all the blades move at same angle (⊕)
- For SSD-
 - 4 damper blade system with
 3 actuators is considered
 - Extreme 2 blades can be operated individually at angles Θ₁ and Θ₃
 - Middle two blades can be operated together at angle
 Θ₂

Conventional

SSD

^{*} In this design seal plate was considered

Damper Angles

	Comparison of Damper Angles							
Heater Load	Pressure Drop Across Damper	Parallel	Opposed	SSD				
%	inches WC	Θ	Θ	Θ_1	Θ_2	Θ ₃		
100	0.300	13	25	0	0	90		
80	0.480	3.5	12	0	0	56		
65	0.577	-	-	0	0	42		
50	0.651	-	-	0	0	29		

Impact of Ambient Temperature

Two ambient conditions were considered to study the change in damper angles for 100% heater load

Comparison of Damper Angles							
Ambient Temperature	Pressure Drop Across Damper	Parallel	Opposed		SSD		
°F	inches WC	Θ	Ө	Θ_1	Θ_2	Θ_3	
95	0.300	13	25	0	0	90	
40	0.555	6.5	18	0	0	65	

Summary

- Even with stack damper blades fully closed draft at arch will be more than 0.1 inch WC
- Smart Stack Damper system with 4 blades and 3 actuators provides draft control for 0.1" WC over the wide range of operating conditions
- Flexibility to operate the blades individually provides, efficient and reliable control over draft

